iconLogo
Published:2025/11/8 1:40:12

ISACとDTで未来の車社会がアゲ✨

I. 超要約:車を賢くする最先端技術!

  1. ギャルのキラーポイント✨ ● 車の通信を爆速(ばくはや)&省エネにする魔法🪄 ● デジタルツインで未来を予測しちゃう🔮 ● 渋滞(じゅうたい)も事故(じこ)も減らす未来型システム🚀

  2. 詳細解説

    • 背景: 5G/6G時代到来!車がネットに繋がるIoV(Internet of Vehicles)がアツい🔥 けど、通信とか処理が大変なのよね。
    • 方法: ISAC(通信とセンシングを一緒に!)とDT(車の仮想世界)で、タスク(お仕事)を効率よく分配!
    • 結果: 遅延(ちえん)減、エネルギー消費(しょうひ)減、車の安定性(あんていせい)アップ!
    • 意義(ここがヤバい♡ポイント): 自動運転(じどううんてん)とかスマートシティがもっと進化する予感😍
  3. リアルでの使いみちアイデア💡

    • 自動運転タクシー🚕:スムーズな運行で、移動時間も有効活用!
    • スマート物流🚚:最適なルートで、荷物(にもつ)も早く届く!

続きは「らくらく論文」アプリで

Digital Twin-Assisted Task Offloading and Resource Allocation in ISAC-Enabled Internet of Vehicles

Shanhao Zhan / Zhang Liu / Lianfen Huang / Shaowei Shen / Ziyang Bai / Zhibin Gao / Dusit Niyato

The convergence of the Internet of vehicles (IoV) and 6G networks is driving the evolution of next-generation intelligent transportation systems. However, IoV networks face persistent challenges, including low spectral efficiency in vehicular communications, difficulty in achieving dynamic and adaptive resource optimization, and the need for long-term stability under highly dynamic environments. In this paper, we study the problem of digital twin (DT)-assisted task offloading and resource allocation in integrated sensing and communication (ISAC)-enabled IoV networks. The objective is to minimize the long-term average system cost, defined as a weighted combination of delay and energy consumption, while ensuring queue stability over time. To address this, we employ an ISAC-enabled design and introduce two transmission modes (i.e., raw data transmission (DataT) and instruction transmission (InstrT)). The InstrT mode enables instruction-level transmission, thereby reducing data volume and improving spectral efficiency. We then employ Lyapunov optimization to decompose the long-term stochastic problem into per-slot deterministic problems, ensuring long-term queue stability. Building upon this, we propose a Lyapunov-driven DT-enhanced multi-agent proximal policy optimization (Ly-DTMPPO) algorithm, which leverages DT for global state awareness and intelligent decision-making within a centralized training and decentralized execution (CTDE) architecture. Extensive simulations verify that Ly-DTMPPO achieves superior performance compared with existing benchmarks.

cs / cs.NI