タイトル & 超要約:顔から心拍数!手軽に測れる新技術✨
🌟 ギャル的キラキラポイント✨ ● 動画から心拍数(しんぱくすう)を推定(すいてい)する新モデル「TYrPPG」が登場💖 ● 計算効率(けいさんこうりつ)UPでスマホとかにも実装(じっそう)できちゃうかも📱 ● 色んな状況(じょうきょう)でも正確(せいかく)に測れるから、色んなことに役立ちそう🎵
詳細解説 ● 背景 顔の動画から心拍数を測る研究が進んでるんだけど、既存(きぞん)のモデルは計算が大変だったり、上手く測れない状況もあったんだよね😢 新型コロナ(しんがたころな)の影響(えいきょう)で、非接触(ひせっしょく)で健康(けんこう)チェックしたいってニーズも高まってるし、もっと手軽(てがる)に使える技術が求められてるってワケ✨
● 方法 Transformer(トランスフォーマー)っていう複雑(ふくざつ)な仕組みの代わりに、Mambaout(マンバアウト)っていう、もっとシンプルで効率的(こうりつてき)な構造を採用(さいよう)した「TYrPPG」を開発💖 2Dと3DのCNNを組み合わせた「GVB」と、精度UPの秘密兵器(ひみつへいき)「CSL」も搭載(とうさい)してるよ🎵
● 結果 この「TYrPPG」、計算が速いのに、精度も高いっていうスグレモノ😎💖 室内(しつない)だけじゃなく、色んな場所で、色んな人に使える可能性(かのうせい)があるってこと✨ これで、もっと色んな人が健康管理(けんこうかんり)できるようになるかもね!
続きは「らくらく論文」アプリで
Remote photoplethysmography (rPPG) can remotely extract physiological signals from RGB video, which has many advantages in detecting heart rate, such as low cost and no invasion to patients. The existing rPPG model is usually based on the transformer module, which has low computation efficiency. Recently, the Mamba model has garnered increasing attention due to its efficient performance in natural language processing tasks, demonstrating potential as a substitute for transformer-based algorithms. However, the Mambaout model and its variants prove that the SSM module, which is the core component of the Mamba model, is unnecessary for the vision task. Therefore, we hope to prove the feasibility of using the Mambaout-based module to remotely learn the heart rate. Specifically, we propose a novel rPPG algorithm called uncomplicated and enhanced learning capability rPPG (TYrPPG). This paper introduces an innovative gated video understanding block (GVB) designed for efficient analysis of RGB videos. Based on the Mambaout structure, this block integrates 2D-CNN and 3D-CNN to enhance video understanding for analysis. In addition, we propose a comprehensive supervised loss function (CSL) to improve the model's learning capability, along with its weakly supervised variants. The experiments show that our TYrPPG can achieve state-of-the-art performance in commonly used datasets, indicating its prospects and superiority in remote heart rate estimation. The source code is available at https://github.com/Taixi-CHEN/TYrPPG.