iconLogo
Published:2025/11/7 20:46:45

最強!データ爆増!TabDistillでデータ分析革命💖

超要約: 少ないデータでもTransformerを活かして、高性能な分類モデル作るよ!✨

ギャル的キラキラポイント✨

● データ少なめでもOK!✨ 少数のデータで賢くなれる! ● 計算コスト削減!💰 スマホでも動くかも!? ● 色んな分野で大活躍!💻 可能性無限大!

詳細解説

背景 表形式データ(エクセルとか)って、色んなとこで使うよね! でも、データが少ないと、良い結果が出にくい問題があったの🥺 Transformerモデルっていう、優秀なAIさんがいるんだけど、計算量が多くて、色んなとこで使うのは大変だったの🥺

方法 Transformerさんの良いとこはそのままに、賢さをMLP(ニューラルネット)に「蒸留(じょうりゅう)」(知識を教えるみたいな感じ)したんだって! そうすると、計算量は減るのに、性能は良いままっていう、最強モデルが作れちゃうってワケ💖

続きは「らくらく論文」アプリで

TabDistill: Distilling Transformers into Neural Nets for Few-Shot Tabular Classification

Pasan Dissanayake / Sanghamitra Dutta

Transformer-based models have shown promising performance on tabular data compared to their classical counterparts such as neural networks and Gradient Boosted Decision Trees (GBDTs) in scenarios with limited training data. They utilize their pre-trained knowledge to adapt to new domains, achieving commendable performance with only a few training examples, also called the few-shot regime. However, the performance gain in the few-shot regime comes at the expense of significantly increased complexity and number of parameters. To circumvent this trade-off, we introduce TabDistill, a new strategy to distill the pre-trained knowledge in complex transformer-based models into simpler neural networks for effectively classifying tabular data. Our framework yields the best of both worlds: being parameter-efficient while performing well with limited training data. The distilled neural networks surpass classical baselines such as regular neural networks, XGBoost and logistic regression under equal training data, and in some cases, even the original transformer-based models that they were distilled from.

cs / cs.LG / cs.AI / cs.CL