iconLogo
Published:2025/10/23 7:31:13

VaCoでMLLMをギャル化!視覚理解爆上げ🚀

超要約:MLLM(マルチモーダル大規模言語モデル)の視覚理解をVaCoでレベルアップさせる研究だよ!

✨ ギャル的キラキラポイント ✨ ● 画像を秒速で理解して、質問に答えるAIが爆誕する予感💖 ● eコマースとか医療とか、色んな分野で役立つって、マジ神✨ ● 新しいビジネスチャンスが生まれるかもって、超ワクワクする~😆

詳細解説いくよ~!

背景 最近のAI(人工知能)は、画像を見たり、質問に答えたりできるMLLMってやつがスゴいの!でも、画像の細かいとこまで理解するのは、まだちょっと苦手だったんだよね😢 そこで、もっと賢くするために、この研究が始まったってワケ!

続きは「らくらく論文」アプリで

Vision-Centric Activation and Coordination for Multimodal Large Language Models

Yunnan Wang / Fan Lu / Kecheng Zheng / Ziyuan Huang / Ziqiang Li / Wenjun Zeng / Xin Jin

Multimodal large language models (MLLMs) integrate image features from visual encoders with LLMs, demonstrating advanced comprehension capabilities. However, mainstream MLLMs are solely supervised by the next-token prediction of textual tokens, neglecting critical vision-centric information essential for analytical abilities. To track this dilemma, we introduce VaCo, which optimizes MLLM representations through Vision-Centric activation and Coordination from multiple vision foundation models (VFMs). VaCo introduces visual discriminative alignment to integrate task-aware perceptual features extracted from VFMs, thereby unifying the optimization of both textual and visual outputs in MLLMs. Specifically, we incorporate the learnable Modular Task Queries (MTQs) and Visual Alignment Layers (VALs) into MLLMs, activating specific visual signals under the supervision of diverse VFMs. To coordinate representation conflicts across VFMs, the crafted Token Gateway Mask (TGM) restricts the information flow among multiple groups of MTQs. Extensive experiments demonstrate that VaCo significantly improves the performance of different MLLMs on various benchmarks, showcasing its superior capabilities in visual comprehension.

cs / cs.CV