iconLogo
Published:2025/8/22 16:25:03

多言語AI爆誕!LoRAで賢く言語学習✨

超要約: SSLモデル(AIの言語学習モデル)にLoRAって技術を使って、色んな言語を賢く学べるようにしたよ!

ギャル的キラキラポイント✨ ● LoRA(ローランクアダプテーション)っていう、賢い方法を使ってるから、少ない学習で色んな言語に対応できちゃうんだって! ● 元々得意な言語のことは忘れずに、新しい言語もマスターできちゃうスグレモノ!まさに才色兼備ってコト💖 ● 多言語対応のAIが簡単に作れるから、色んなITサービスがもっと便利になるかも😍

詳細解説 ● 背景 AIが言葉を覚えるモデル(SSL)は、一つの言語に特化しがちだったの。新しい言語を覚えさせるには、時間もお金もかかって大変だったみたい🥺

● 方法 LoRAっていう、効率よく学習できる技術を使って、色んな言語を同時に学習できるようにしたんだって! 既存の言語能力を落とさない工夫もバッチリ👌

続きは「らくらく論文」アプリで

Seamless Language Expansion: Enhancing Multilingual Mastery in Self-Supervised Models

Jing Xu / Minglin Wu / Xixin Wu / Helen Meng

Self-supervised (SSL) models have shown great performance in various downstream tasks. However, they are typically developed for limited languages, and may encounter new languages in real-world. Developing a SSL model for each new language is costly. Thus, it is vital to figure out how to efficiently adapt existed SSL models to a new language without impairing its original abilities. We propose adaptation methods which integrate LoRA to existed SSL models to extend new language. We also develop preservation strategies which include data combination and re-clustering to retain abilities on existed languages. Applied to mHuBERT, we investigate their effectiveness on speech re-synthesis task. Experiments show that our adaptation methods enable mHuBERT to be applied to a new language (Mandarin) with MOS value increased about 1.6 and the relative value of WER reduced up to 61.72%. Also, our preservation strategies ensure that the performance on both existed and new languages remains intact.

cs / cs.CL / eess.AS