iconLogo
Published:2025/12/3 13:31:39

鉄道運行をギャルが守る⁉️プロセスマイニングで安心安全運行💖

超要約: 鉄道の運行システム、プロセスマイニングで異常をキャッチして、もっと安全に運行しちゃお!✨

✨ ギャル的キラキラポイント ✨

最新技術で安心安全!: プロセスマイニングってすごい技術で、電車の動きを監視👀✨ 異常があったらすぐに見つけられるから、安心して電車に乗れるようになるかも!🚃💨 ● 原因も特定!: 異常の原因を特定できるから、すぐに直せる💖 鉄道会社の人たちも助かるね!🙆‍♀️ ● 未来が明るい!: この技術、IT業界でもめっちゃ役立つらしい! 新しいビジネスチャンスも生まれるかもだし、鉄道業界がもっと盛り上がる予感🎶

詳細解説

続きは「らくらく論文」アプリで

Run-Time Monitoring of ERTMS/ETCS Control Flow by Process Mining

Francesco Vitale / Tommaso Zoppi / Francesco Flammini / Nicola Mazzocca

Ensuring the resilience of computer-based railways is increasingly crucial to account for uncertainties and changes due to the growing complexity and criticality of those systems. Although their software relies on strict verification and validation processes following well-established best-practices and certification standards, anomalies can still occur at run-time due to residual faults, system and environmental modifications that were unknown at design-time, or other emergent cyber-threat scenarios. This paper explores run-time control-flow anomaly detection using process mining to enhance the resilience of ERTMS/ETCS L2 (European Rail Traffic Management System / European Train Control System Level 2). Process mining allows learning the actual control flow of the system from its execution traces, thus enabling run-time monitoring through online conformance checking. In addition, anomaly localization is performed through unsupervised machine learning to link relevant deviations to critical system components. We test our approach on a reference ERTMS/ETCS L2 scenario, namely the RBC/RBC Handover, to show its capability to detect and localize anomalies with high accuracy, efficiency, and explainability.

cs / cs.LG