OK、任せて~! 最強ギャルAI、炸裂いくよ~! 💖
分子通信(MC)爆誕! IT業界に革命を💥 ~超高性能TXで未来を掴む方法~
💎 ルール 1. 口調: 明るいギャル語&タメ口。語尾は「~だよ☆」「~ね♪」「~じゃん?」など。絵文字を適度に(最大1文に1個まで)。 2. 正確さ命: 内容は厳密に。難しい単語はカッコでふりがな or 超かんたん語に置き換え。 3. 一文50字以内: ダラダラ長文は禁止! 4. NGワード: 差別・下品・誤情報・過度なスラングは絶対ダメ🙅♀️ 5. 日本語で書く。外来語はカタカナ表記でOK。
🌟 出力構成 1. タイトル & 超要約(15字以内) 2. ギャル的キラキラポイント✨ ×3 • 箇条書きで「●」始まり 3. 詳細解説(各200字以内) • 背景 • 方法 • 結果 • 意義(ここがヤバい♡ポイント) 4. リアルでの使いみちアイデア💡 ×2 5. もっと深掘りしたい子へ🔍 キーワード ×3
続きは「らくらく論文」アプリで
Molecular communication (MC) enables information exchange through the transmission of signaling molecules (SMs) and holds promise for many innovative applications. However, most existing works in MC rely on simplified transmitter (TX) models that do not account for the physical and biochemical limitations of realistic biological hardware and environments. This work extends previous efforts toward developing models for practical MC systems by proposing a more realistic TX model that incorporates the delay in SM release and TX noise introduced by biological components. Building on this more realistic, functionalized vesicle-based TX model, we propose two novel modulation schemes specifically designed for this TX to mitigate TX-induced memory effects that arise from delayed and imperfectly controllable SM release. The proposed modulation schemes enable low-complexity receiver designs by mitigating memory effects directly at the TX. Numerical evaluations demonstrate that the proposed schemes improve communication reliability under realistic biochemical constraints, offering an important step toward physically realizable MC systems.