iconLogo
Published:2025/10/23 11:01:59

医療画像AI、ハズレ値(OOD)検出の教科書📖✨

超要約:医療画像AIの「想定外」を見つけるベンチマーク(評価基準)を開発したよ! 医療AIの信頼性アップに貢献🤩

✨ ギャル的キラキラポイント ✨ ● 医療画像AIの"安全装置"を作る研究! ● 14個のデータセットでガチ検証!結果を公開! ● AIビジネスの信頼度爆上がり!

詳細解説 背景:AIが医療画像(レントゲンとか)を診断する時代じゃん? でも、AIが「想定外」の画像に出会うと、ヘンなこと言っちゃう可能性も😱 そこで、AIが「これは変だよ!」って気づく「ハズレ値検出(OOD検出)」技術が大事になってくるの!

方法:医療画像用のOOD検出の評価基準って、まだあんまりなかったから、OpenMIBOODっていうベンチマークを作っちゃった! いろんな医療画像データセットを使って、24種類の手法を試した結果も公開してるよ!

続きは「らくらく論文」アプリで

OpenMIBOOD: Open Medical Imaging Benchmarks for Out-Of-Distribution Detection

Max Gutbrod / David Rauber / Danilo Weber Nunes / Christoph Palm

The growing reliance on Artificial Intelligence (AI) in critical domains such as healthcare demands robust mechanisms to ensure the trustworthiness of these systems, especially when faced with unexpected or anomalous inputs. This paper introduces the Open Medical Imaging Benchmarks for Out-Of-Distribution Detection (OpenMIBOOD), a comprehensive framework for evaluating out-of-distribution (OOD) detection methods specifically in medical imaging contexts. OpenMIBOOD includes three benchmarks from diverse medical domains, encompassing 14 datasets divided into covariate-shifted in-distribution, near-OOD, and far-OOD categories. We evaluate 24 post-hoc methods across these benchmarks, providing a standardized reference to advance the development and fair comparison of OOD detection methods. Results reveal that findings from broad-scale OOD benchmarks in natural image domains do not translate to medical applications, underscoring the critical need for such benchmarks in the medical field. By mitigating the risk of exposing AI models to inputs outside their training distribution, OpenMIBOOD aims to support the advancement of reliable and trustworthy AI systems in healthcare. The repository is available at https://github.com/remic-othr/OpenMIBOOD.

cs / cs.CV / cs.LG