iconLogo
Published:2025/10/23 8:04:57

タイトル & 超要約:DRLのセキュリティ、ギャル流で守るぞ💖

I. 研究の概要

  1. 研究の目的

    • DRL(深層強化学習)のセキュリティを爆上げ🔥 敵対的攻撃(悪意ある攻撃)からモデルを守る方法を研究してるんだって!
    • 従来のRL(強化学習)は「環境の不安定さ」に強かったけど、DRLは攻撃に弱いらしい😱 それを分析して、防御策を見つけるのが目的!
    • 攻撃を「種類」と「対象」で分類するフレームワークを提案🙌 これでDRLを安全に使えちゃうね✨
    • 自律走行とか、色んな分野でDRLが使えるようになるってこと💖
  2. 研究の背景

    • DRLは色んな分野で活躍中!✨でも、攻撃に弱いってことが分かってきたみたい💦
    • 敵対的攻撃は、ちょっとしたイタズラ(摂動)でモデルを騙す攻撃のこと😱
    • IT業界でDRLが使われてるから、セキュリティは超大事💪
    • 攻撃と防御の対策を研究して、安全なDRLを使えるようにするのが、この研究のキモ💖

    図表: 敵対的攻撃と防御の概念図

続きは「らくらく論文」アプリで

Enhancing Security in Deep Reinforcement Learning: A Comprehensive Survey on Adversarial Attacks and Defenses

Wu Yichao / Wang Yirui / Ding Panpan / Wang Hailong / Zhu Bingqian / Liu Chun

With the wide application of deep reinforcement learning (DRL) techniques in complex fields such as autonomous driving, intelligent manufacturing, and smart healthcare, how to improve its security and robustness in dynamic and changeable environments has become a core issue in current research. Especially in the face of adversarial attacks, DRL may suffer serious performance degradation or even make potentially dangerous decisions, so it is crucial to ensure their stability in security-sensitive scenarios. In this paper, we first introduce the basic framework of DRL and analyze the main security challenges faced in complex and changing environments. In addition, this paper proposes an adversarial attack classification framework based on perturbation type and attack target and reviews the mainstream adversarial attack methods against DRL in detail, including various attack methods such as perturbation state space, action space, reward function and model space. To effectively counter the attacks, this paper systematically summarizes various current robustness training strategies, including adversarial training, competitive training, robust learning, adversarial detection, defense distillation and other related defense techniques, we also discuss the advantages and shortcomings of these methods in improving the robustness of DRL. Finally, this paper looks into the future research direction of DRL in adversarial environments, emphasizing the research needs in terms of improving generalization, reducing computational complexity, and enhancing scalability and explainability, aiming to provide valuable references and directions for researchers.

cs / cs.CR / cs.AI / cs.LG