iconLogo
Published:2025/8/22 23:22:49

産業連鎖(さんぎょうれんさ)のレジリエンス予測、爆誕✨

超要約:物理学の力で、企業のサプライチェーンのピンチを予知!

ギャル的キラキラポイント✨ ● 物理学の数式をAIに注入!難しいコトをかわいく解決💖 ● サプライチェーンの弱点(じゃくてん)を事前にキャッチできるって、すごくない?😳 ● リスク管理が進化して、ビジネスチャンスも広がるかも🎵

詳細解説 • 背景 産業連鎖って、企業と企業が繋がった巨大ネットワークのこと。最近は、災害とかパンデミックとか、色々あって、このネットワークが弱くなっちゃうとヤバい😱それを予測できたら、企業は助かるよね!

• 方法 物理学の数式をヒントに、AI(人工知能)が産業連鎖の動きを学習できるようにしたんだって!グラフニューラルネットワークっていう、ちょっと難しいAIの技術を使ってるみたい😉

続きは「らくらく論文」アプリで

Physics-Inspired Spatial Temporal Graph Neural Networks for Predicting Industrial Chain Resilience

Bicheng Wang / Junping Wang / Yibo Xue

Industrial chain plays an increasingly important role in the sustainable development of national economy. However, as a typical complex network, data-driven deep learning is still in its infancy in describing and analyzing the resilience of complex networks, and its core is the lack of a theoretical framework to describe the system dynamics. In this paper, we propose a physically informative neural symbolic approach to describe the evolutionary dynamics of complex networks for resilient prediction. The core idea is to learn the dynamics of the activity state of physical entities and integrate it into the multi-layer spatiotemporal co-evolution network, and use the physical information method to realize the joint learning of physical symbol dynamics and spatiotemporal co-evolution topology, so as to predict the industrial chain resilience. The experimental results show that the model can obtain better results and predict the elasticity of the industry chain more accurately and effectively, which has certain practical significance for the development of the industry.

cs / cs.LG / cs.AI / cs.CE