iconLogo
Published:2025/10/23 8:38:18

表面形状測定、AIで激変!マルチタスク学習のススメ✨

超要約: 表面のギザギザ測るのにAI使って、精度も信頼性も爆上げしちゃお!😎


● 表面のデコボコ具合(粗さとか)をAIが予測してくれる!😳 ● 測定の「アヤシさ」(不確かさ)も一緒に教えてくれるから安心💖 ● いろんな測定器(レーザーとか)のデータも、まとめて分析できるって最高じゃない?🎶


続きは「らくらく論文」アプリで

Multi-Task Deep Learning for Surface Metrology

D. Kucharski / A. Gaska / T. Kowaluk / K. Stepien / M. Repalska / B. Gapinski / M. Wieczorowski / M. Nawotka / P. Sobecki / P. Sosinowski / J. Tomasik / A. Wojtowicz

A reproducible deep learning framework is presented for surface metrology to predict surface texture parameters together with their reported standard uncertainties. Using a multi-instrument dataset spanning tactile and optical systems, measurement system type classification is addressed alongside coordinated regression of Ra, Rz, RONt and their uncertainty targets (Ra_uncert, Rz_uncert, RONt_uncert). Uncertainty is modelled via quantile and heteroscedastic heads with post-hoc conformal calibration to yield calibrated intervals. On a held-out set, high fidelity was achieved by single-target regressors (R2: Ra 0.9824, Rz 0.9847, RONt 0.9918), with two uncertainty targets also well modelled (Ra_uncert 0.9899, Rz_uncert 0.9955); RONt_uncert remained difficult (R2 0.4934). The classifier reached 92.85% accuracy and probability calibration was essentially unchanged after temperature scaling (ECE 0.00504 -> 0.00503 on the test split). Negative transfer was observed for naive multi-output trunks, with single-target models performing better. These results provide calibrated predictions suitable to inform instrument selection and acceptance decisions in metrological workflows.

cs / physics.app-ph / cs.AI / cs.LG / stat.AP / stat.ML