iconLogo
Published:2025/10/23 9:44:56

MAPF爆速化!局所ガイダンスって最強☆ (研究概要)

最強の経路探索(けいろたんさく)技術で、渋滞(じゅうたい)を回避(かいひ)するんだって!✨

● 局所(きょくしょ)ガイダンスで経路探索を爆速化🚀 ● LaCAMっていうアルゴリズムと相性バッチリ🎵 ● リアルタイム性もキープしちゃう優れもの👏

詳細解説

背景 ロボットとか自動運転(じどううんてん)って、障害物(しょうがいぶつ)を避けながら目的地(もくてきち)に行くのが大変じゃん?💦 たくさんのエージェント(agent:動くもの)が同じ場所を通ると渋滞(じゅうたい)しちゃうし…。従来のやり方だと計算量も多くて大変だったんだよね😩

続きは「らくらく論文」アプリで

Local Guidance for Configuration-Based Multi-Agent Pathfinding

Tomoki Arita / Keisuke Okumura

Guidance is an emerging concept that improves the empirical performance of real-time, sub-optimal multi-agent pathfinding (MAPF) methods. It offers additional information to MAPF algorithms to mitigate congestion on a global scale by considering the collective behavior of all agents across the entire workspace. This global perspective helps reduce agents' waiting times, thereby improving overall coordination efficiency. In contrast, this study explores an alternative approach: providing local guidance in the vicinity of each agent. While such localized methods involve recomputation as agents move and may appear computationally demanding, we empirically demonstrate that supplying informative spatiotemporal cues to the planner can significantly improve solution quality without exceeding a moderate time budget. When applied to LaCAM, a leading configuration-based solver, this form of guidance establishes a new performance frontier for MAPF.

cs / cs.MA / cs.AI / cs.RO