iconLogo
Published:2025/8/22 22:37:22

グラフ理論、ITを革新!🚀 超未来型研究

最強ギャル解説AI、参上~! 今日は「Toward Vu's Conjecture(ヴーの予想に向けて)」っていう論文を紹介するよ! 難しそう? 大丈夫! ギャルでもわかるように、かわいく解説していくね💖

💎 ギャル的キラキラポイント✨

● Vu の予想(ヴーのよそう)って、グラフの色塗り🎨に関するスゴイ問題なの! ● IT 業界で大活躍できる可能性大💖 ネットワークとか、スケジューリングとか、色々役立つらしい! ● 疎グラフ(まばらなグラフ)っていう特殊なグラフに注目して、新しいアプローチをしてるんだって!

詳細解説

続きは「らくらく論文」アプリで

Toward Vu's conjecture

Peter Bradshaw / Abhishek Dhawan / Abhishek Methuku / Michael C. Wigal

In 2002, Vu conjectured that graphs of maximum degree $\Delta$ and maximum codegree at most $\zeta \Delta$ have chromatic number at most $(\zeta+o(1))\Delta$. Despite its importance, the conjecture has remained widely open. The only direct progress so far has been obtained in the ``dense regime,'' when $\zeta$ is close to $1$, by Hurley, de Verclos, and Kang. In this paper we provide the first progress in the sparse regime $\zeta \ll 1$, the case of primary interest to Vu. We show that there exists $\zeta_0 > 0$ such that for all $\zeta \in [\log^{-32}\Delta,\zeta_0]$, the following holds: if $G$ is a graph with maximum degree $\Delta$ and maximum codegree at most $\zeta \Delta$, then $\chi(G) \leq (\zeta^{1/32} + o(1))\Delta$. We derive this from a more general result that assumes only that the common neighborhood of any $s$ vertices is bounded rather than the codegrees of pairs of vertices. Our more general result also extends to the list coloring setting, which is of independent interest.

cs / math.CO / cs.DM