iconLogo
Published:2025/10/23 7:03:35

トランスフォーマーの知恵をMambaへ伝授!✨

  1. 超要約: TransformerからMambaへ、賢さだけをちょー効率的に移植する方法だよ!😎

  2. ギャル的キラキラポイント✨

    • ● Transformerのすごい「Attention」を、Mambaに賢く伝授しちゃう!🎓
    • ● 少ないデータでも、Mambaがめっちゃ賢くなる魔法🪄
    • ● 論文もコードも公開されてて、みんなで試せるのがアツい🔥
  3. 詳細解説

    • 背景: Transformer(優秀なAIモデル)は計算が大変💦 一方Mambaは効率的だけど、まだTransformerほど賢くないの😢
    • 方法: 「Attention Bridge(橋)」を使って、Transformerの知識をMambaに伝授! しかも、データ少なくてもOK!
    • 結果: Mambaの性能が爆上がり! Transformerの知識を活かして、賢く&効率的になったってこと💖
    • 意義: データ少なくても高性能モデルが作れるから、AI開発のコスト削減&新しいサービス作りに繋がるんだって!
  4. リアルでの使いみちアイデア💡

    • アイデア1: 大量の文章を扱うチャットボットが、もっと賢く&安くなるかも!💬
    • アイデア2: 株価とかの未来予測が、少ないデータでめっちゃ当たるように?!💰

続きは「らくらく論文」アプリで

Data Efficient Any Transformer-to-Mamba Distillation via Attention Bridge

Penghao Wang / Yuhao Zhou / Mengxuan Wu / Panpan Zhang / Zhangyang Wang / Kai Wang

State-space models (SSMs) have emerged as efficient alternatives to Transformers for sequence modeling, offering superior scalability through recurrent structures. However, their training remains costly and the ecosystem around them is far less mature than that of Transformers. Moreover, the structural heterogeneity between SSMs and Transformers makes it challenging to efficiently distill knowledge from pretrained attention models. In this work, we propose Cross-architecture distillation via Attention Bridge (CAB), a novel data-efficient distillation framework that efficiently transfers attention knowledge from Transformer teachers to state-space student models. Unlike conventional knowledge distillation that transfers knowledge only at the output level, CAB enables token-level supervision via a lightweight bridge and flexible layer-wise alignment, improving both efficiency and transferability. We further introduce flexible layer-wise alignment strategies to accommodate architectural discrepancies between teacher and student. Extensive experiments across vision and language domains demonstrate that our method consistently improves the performance of state-space models, even under limited training data, outperforming both standard and cross-architecture distillation methods. Our findings suggest that attention-based knowledge can be efficiently transferred to recurrent models, enabling rapid utilization of Transformer expertise for building a stronger SSM community.

cs / cs.LG