iconLogo
Published:2025/12/3 14:29:00

CoCoAでLLMの不安を解消!✨

超要約: LLMの「ウソ」を見抜く新技術、CoCoA登場!

ギャル的キラキラポイント✨ ● LLM(AI)の答えの「自信度」を測れるようになるってコト! ● 情報と一貫性を両方見て、より正確な答えを選べるんだって♪ ● 色んなITサービスが、もっと安心して使えるようになるかも!

詳細解説 背景 LLMって、すごい賢いけど、たまにトンチンカンなこと言ったりするじゃん?💦 それを直すために、LLMがどれくらい「確信」してるか、数字で表せるようにしたのがCoCoAなの!

方法 CoCoAは、情報理論と一貫性っていう2つの方法を組み合わせることで、LLMの「不安度」を測るんだって! 簡単に言うと、答えがどれだけ確からしいか(自信度)と、色んな角度から見ても同じ答えになるか(一貫性)を見てるんだって!🤔

続きは「らくらく論文」アプリで

Uncertainty Quantification for LLMs through Minimum Bayes Risk: Bridging Confidence and Consistency

Roman Vashurin / Maiya Goloburda / Albina Ilina / Aleksandr Rubashevskii / Preslav Nakov / Artem Shelmanov / Maxim Panov

Uncertainty quantification (UQ) methods for Large Language Models (LLMs) encompass a variety of approaches, with two major types being particularly prominent: information-based, which focus on model confidence expressed as token probabilities, and consistency-based, which assess the semantic relationship between multiple outputs generated using repeated sampling. Several recent methods have combined these two approaches to boost UQ performance. However, they sometimes fail to outperform much simpler baseline methods. Our work discusses the fundamental approach to constructing uncertainty measures that directly links uncertainty with the minimum Bayes risks achieved by LLM decoding. Building on these findings, we propose a novel approach to integrating model confidence with output consistency, resulting in a family of efficient and robust UQ methods. Our investigation reveals distinctive characteristics of LLMs as probabilistic models, which help to explain why these UQ methods underperform in certain tasks. Based on these findings, we propose a new way of synthesizing model confidence and output consistency, leading to a family of efficient and robust UQ methods. We evaluate our approach across various tasks such as question answering, abstractive summarization, and machine translation, demonstrating sizable improvements over state-of-the-art UQ approaches.

cs / cs.CL