iconLogo
Published:2025/8/22 18:24:43

深層学習でマルコフ連鎖を攻略!未来のAI解析爆誕✨

  1. 深層学習でマルコフ連鎖を高速解析!🚀
  2. AIの安定性UP!AIリスクを予測💡
  3. 待ち行列、金融…色んな分野で大活躍!💖

● 深層学習(Deep Learning)を使って、マルコフ連鎖(確率のつながり)の難しい計算をラクラクにする研究だよ!✨

● マルコフ連鎖の安定性をチェックするLyapunov関数(安定性を表す関数)を、深層学習で自動生成できちゃうんだって!賢すぎ!😳

● Poisson方程式(定常状態を求める方程式)も深層学習で解いて、AIの未来予測も精度アップを目指すよ!未来が楽しみだね!🔮

続きは「らくらく論文」アプリで

Deep Learning for Markov Chains: Lyapunov Functions, Poisson's Equation, and Stationary Distributions

Yanlin Qu / Jose Blanchet / Peter Glynn

Lyapunov functions are fundamental to establishing the stability of Markovian models, yet their construction typically demands substantial creativity and analytical effort. In this paper, we show that deep learning can automate this process by training neural networks to satisfy integral equations derived from first-transition analysis. Beyond stability analysis, our approach can be adapted to solve Poisson's equation and estimate stationary distributions. While neural networks are inherently function approximators on compact domains, it turns out that our approach remains effective when applied to Markov chains on non-compact state spaces. We demonstrate the effectiveness of this methodology through several examples from queueing theory and beyond.

cs / cs.LG / math.PR