最強ギャルAI、参上〜!😎✨
超要約: 細部までめっちゃキレイな画像作れるAI技術!ビジネスでも大活躍しちゃうよ!
🌟 ギャル的キラキラポイント✨ ● カテゴリ間の情報がごっちゃにならない工夫が神👏✨ ● 細部までクッキリの高画質!まるで写メ🤳盛れる~! ● ビジネスチャンス爆誕!イケてるサービスがいっぱい💖
背景: 最近のAI画像生成(エーアイがぞうせいせい)はすごいけど、細かい部分が苦手だったり、似たような画像ばっかりだったりしたの😢。だから、もっとハイクオリティで、色んなジャンルの画像を作れるように研究したんだって!
続きは「らくらく論文」アプリで
Diffusion models are highly regarded for their controllability and the diversity of images they generate. However, class-conditional generation methods based on diffusion models often focus on more common categories. In large-scale fine-grained image generation, issues of semantic information entanglement and insufficient detail in the generated images still persist. This paper attempts to introduce a concept of a tiered embedder in fine-grained image generation, which integrates semantic information from both super and child classes, allowing the diffusion model to better incorporate semantic information and address the issue of semantic entanglement. To address the issue of insufficient detail in fine-grained images, we introduce the concept of super-resolution during the perceptual information generation stage, enhancing the detailed features of fine-grained images through enhancement and degradation models. Furthermore, we propose an efficient ProAttention mechanism that can be effectively implemented in the diffusion model. We evaluate our method through extensive experiments on public benchmarks, demonstrating that our approach outperforms other state-of-the-art fine-tuning methods in terms of performance.