超高速!離散データ(ゲームとか)を賢く作る魔法🧙♀️✨
● 離散データ(数字とか文字)をめっちゃ効率よく生成できる! ● 難しい問題も、MDNSならサクッと解決できちゃうかも! ● IT業界の未来を明るく照らす、期待の星🌟
● 背景 IT界隈(業界)で、画像とか文章とか作るモデルは流行ってるんだけど、ゲームとかの数字とか文字みたいな「離散データ」を上手く扱うのは難しかったの😭 でも、MDNSはそれを可能にする技術なの!
● 方法 MDNSは、離散データに特化した拡散モデル(データをノイズで汚して、キレイにするモデル)を使うよ! CTMC(連続時間Markov Chain)の理論を使って、複雑な問題を解くんだって!マスク付き離散拡散モデルっていう、ちょっと難しそうなテクニックを使ってるみたい😳
続きは「らくらく論文」アプリで
We study the problem of learning a neural sampler to generate samples from discrete state spaces where the target probability mass function $\pi\propto\mathrm{e}^{-U}$ is known up to a normalizing constant, which is an important task in fields such as statistical physics, machine learning, combinatorial optimization, etc. To better address this challenging task when the state space has a large cardinality and the distribution is multi-modal, we propose $\textbf{M}$asked $\textbf{D}$iffusion $\textbf{N}$eural $\textbf{S}$ampler ($\textbf{MDNS}$), a novel framework for training discrete neural samplers by aligning two path measures through a family of learning objectives, theoretically grounded in the stochastic optimal control of the continuous-time Markov chains. We validate the efficiency and scalability of MDNS through extensive experiments on various distributions with distinct statistical properties, where MDNS learns to accurately sample from the target distributions despite the extremely high problem dimensions and outperforms other learning-based baselines by a large margin. A comprehensive study of ablations and extensions is also provided to demonstrate the efficacy and potential of the proposed framework. Our code is available at https://github.com/yuchen-zhu-zyc/MDNS.