iconLogo
Published:2025/11/7 18:32:02

タイトル & 超要約:掘削速度予測AI、IT業界の未来を彩る!✨

● ギャル的キラキラポイント✨1:LSTM、Transformer、TS-Mixer!最強AI軍団が掘削(くっさく)をサポート💖 ● ギャル的キラキラポイント✨2:高精度ROP予測でコスト削減!IT企業も大チャンス到来ってコト😎 ● ギャル的キラキラポイント✨3:AIドリリングアシスタント?!未来感ハンパないって!🚀

詳細解説: 背景:石油掘削(くっさく)の速度(ROP)予測、マジ大事!でも、データ複雑すぎて予測ムズかった😭 方法:LSTM、Transformer、TS-Mixerを合体!最新AIで高精度予測を目指すよ!✨ 結果:既存のモデルより予測精度UP!マジすごい!✨ 掘削作業が効率化するね♪ 意義:IT企業も参戦できる!新しいビジネスチャンス到来!💰データ分析、AI、IoT、全部盛り!

リアルでの使いみちアイデア💡:

  1. 掘削データを可視化するアプリ!アラート機能もあって、安全に作業できるね♪
  2. AIアシスタント搭載の掘削プラットフォーム!まるで未来都市みたい🏙️

もっと深掘りしたい子へ🔍:

  1. ディープラーニング(Deep Learning)
  2. 時系列データ(Time Series Data)
  3. ビジネスチャンス(Business Opportunity)

続きは「らくらく論文」アプリで

Advanced Hybrid Transformer LSTM Technique with Attention and TS Mixer for Drilling Rate of Penetration Prediction

Saddam Hussain Khan (Artificial Intelligence Lab / Department of Computer Systems Engineering / University of Engineering,Applied Sciences)

Rate of Penetration (ROP) prediction is critical for drilling optimization yet remains challenging due to the nonlinear, dynamic, and heterogeneous characteristics of drilling data. Conventional empirical, physics-based, and standard machine learning models rely on oversimplified assumptions or intensive feature engineering, constraining their capacity to model long-term dependencies and intricate feature interactions. To address these issues, this study presents a new deep learning Hybrid LSTM-Trans-Mixer-Att framework that first processes input data through a customized Long Short-Term Memory (LSTM) network to capture multi-scale temporal dependencies aligned with drilling cycles. Subsequently, an Enhanced Transformer encoder with drilling-specific positional encodings and real-time optimization refines the features. Concurrently, a parallel Time-Series Mixer (TS-Mixer) block introduced facilitates efficient cross-feature interaction modeling of static and categorical parameters, including lithological indices and mud properties. The feature representations extracted from the Enhanced Transformer and TS-Mixer modules are integrated through a dedicated fusion layer. Finally, an adaptive attention mechanism then dynamically assigns contextual weights to salient features, enhancing discriminative representation learning and enabling high-fidelity ROP prediction. The proposed framework combines sequential memory, static feature interactions, global context learning, and dynamic feature weighting, providing a comprehensive solution for the heterogeneous and event-driven nature of drilling dynamics. Experimental validation on real-world drilling datasets demonstrates superior performance, achieving an Rsquare of 0.9991 and a MAPE of 1.447%, significantly outperforming existing baseline and hybrid models.

cs / cs.LG / cs.AI / cs.SY / eess.SY