超要約:LLM学習の弱点、エントロピー崩壊を解決!🎉
✨ ギャル的キラキラポイント ✨ ● エントロピー崩壊(ポリシーの多様性が失われる現象)をAEPOで回避!🙌 ● エントロピーを直接制御して、LLMの賢さをUP⤴ ● AIの学習を安定させて、色んなタスクに使えるようにするの!😎
詳細解説: 背景:LLM(大規模言語モデル)の学習、RFT(ファインチューニング)はめっちゃ大事✨ でもGRPOっていう手法だと、学習が進むと「エントロピー崩壊」っていう問題が…🤯 ポリシーの多様性がなくなって、つまんないLLMになっちゃうんだよね😢
方法:AEPOは、エントロピーを直接コントロール!温度調整された分布を使って、高いエントロピー(いろんなこと試す)と低いエントロピー(安定)を使い分けるよ💕 REINFORCEっていう手法で、より良い学習ができるようにしてるんだって!
続きは「らくらく論文」アプリで
Reinforcement fine-tuning (RFT) is essential for enhancing the reasoning capabilities of large language models (LLM), yet the widely adopted Group Relative Policy Optimization (GRPO) suffers from entropy collapse, where entropy monotonically decreases, exploration vanishes, and policies converge prematurely. Existing entropy-regularized methods only partially alleviate this issue while introducing bias and instability, leaving entropy control unresolved and the connection between entropy, exploration, and performance unclear. We propose Arbitrary Entropy Policy Optimization (AEPO), which eliminates entropy collapse by replacing entropy bonuses with REINFORCE policy gradient on temperature-adjusted distributions and stabilizing entropy through temperature regulation. AEPO integrates three key designs: policy gradient as regularization, distribution as regularization, and REINFORCE as regularization, enabling precise entropy control without distorting optimization. Experiments demonstrate three major contributions: AEPO (1) stabilizes entropy at arbitrary target levels, effectively removing collapse in GRPO; (2) reveals a non-monotonic relation where performance first improves then declines with increasing entropy, clarifying the link between entropy, exploration, and reasoning; and (3) generalizes beyond entropy, providing a broader RFT paradigm where superior target distributions can serve as REINFORCE regularizers.