超要約: イベントの偏り(例: いいね!の数)をAIで予測精度UP!✨
🌟 ギャル的キラキラポイント ● マークの偏り(人気イベントと不人気イベント)を考慮して予測するんだって!😳 ● 新しいAIモデル「IFNMTPP」が、スゴイ性能を発揮!計算も早いらしい!🚀 ● レコメンドとか、異常検知とか、色んなことに使えるのがアツい🔥
🌟 詳細解説 ● 背景 世の中には、色んなイベントが起きてるじゃん?SNSの投稿とか、地震とか!💥 でも、イベントの種類(マーク)によって、出現する頻度が違うんだよね。例えば、いいね!の数は偏りがち🥺。この偏りが、AIの予測を難しくしちゃうの!
● 方法 そこで登場するのが「IFNMTPP」✨。これは、マークの偏りを考慮して、イベントの発生時間と種類を予測するAIモデルなんだ!特別な計算なしで、高速に学習できるのがポイント💖!
続きは「らくらく論文」アプリで
Marked Temporal Point Process (MTPP) has been well studied to model the event distribution in marked event streams, which can be used to predict the mark and arrival time of the next event. However, existing studies overlook that the distribution of event marks is highly imbalanced in many real-world applications, with some marks being frequent but others rare. The imbalance poses a significant challenge to the performance of the next event prediction, especially for events of rare marks. To address this issue, we propose a thresholding method, which learns thresholds to tune the mark probability normalized by the mark's prior probability to optimize mark prediction, rather than predicting the mark directly based on the mark probability as in existing studies. In conjunction with this method, we predict the mark first and then the time. In particular, we develop a novel neural MTPP model to support effective time sampling and estimation of mark probability without computationally expensive numerical improper integration. Extensive experiments on real-world datasets demonstrate the superior performance of our solution against various baselines for the next event mark and time prediction. The code is available at https://github.com/undes1red/IFNMTPP.